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Motivation behind the Implementation

Most Specific Generalization

Least common subsumer (lcs) and Most Specific Concept (msc).

The lcs yields a concept that captures all commonalities of pair of concepts
(subsumption).

The msc generalizes an individual into a single concept (instance checking).

Support building and maintaining the knowledge base (KB) from bottom up
approach.

Processed, investigated, and added into KB ⇒ new knowledge!

Neither the lcs nor the msc need to exist in general EL-TBox.
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Motivation behind the Implementation

Knowledge Base ”Family” and its Canonical Model

T family1
:

{Wife ⊑ Female ⊓ Person ⊓ ∃likes.Husband;
HappyPerson ⊑ Person ⊓ ∃likes.HappyPerson;
Husband ⊑ Male ⊓ Person ⊓ ∃likes.Wife}
Afamily1

: {likes(bob,carol); likes(bob,bob); Wife(carol); HappyPerson(bob)}

dBob

{Husband, Male,
HappyPerson,
Person}

dCarol

{Female,
Person, Wife}

dHusband

{Male, Husband,
Person}

dWife

{Wife,
Person, Female}

likes

likes

likes likes

likes

lcs(Male, Person)=⊺, but there is no lcs for Husband and HappyPerson
▸ Husband and HappyPerson are cyclic concepts.

msc(carol)=Wife, but there is no msc for bob
▸ Wife(carol) and HappyPerson(bob).
▸ Wife and HappyPerson are cyclic concepts.
▸ Different results for the msc in a cyclic ontology!
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Motivation behind the Implementation

Knowledge Base ”Family” and its Canonical Model

T family1
:

Wife ⊑ Female ⊓ Person ⊓ ∃likes.Husband;
Husband ⊑ Male ⊓ Person ⊓ ∃likes.Wife
HappyPerson ⊑ Person ⊓ ∃likes.HappyPerson;
Afamily1

: likes(Bob,Carol); likes(Bob,Bob); Wife(Carol); HappyPerson(Bob)

dBob

{Husband, Male,
HappyPerson,
Person}

dCarol

{Female,
Person, Wife}

dHusband

{Male, Husband,
Person}

dWife

{Wife,
Person, Female}

likes

likes

likes likes

likes

How to compute and decide the existence of the most specific generalization w.r.t.
general EL TBox?

For the sake of simplicity, we only consider the notions related to the least
common subsumer in further sections.

Most specific concept can be defined analogously.
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Least Common Subsumer

A concept E is the least common subsumer(lcs) of C and D w.r.t. T (lcsT (C,
D)) iff:

– C ⊑T E and D ⊑T E
– For each concept F such that C ⊑T F and D ⊑T F, then E ⊑T F.

We deal with a general EL TBox.

The computed lcs can be captured in an infinite size.

Can we obtain a role-depth bounded lcs with a depth k?

The role-depth (rd(C)): the maximal nesting of ∃-quantifiers in C.

Let k ∈ N and E, F are the role-depth bounded concepts with the role-depth up
to k, then E is the role-depth bounded lcs (k-lcsT (C, D)) of C and D w.r.t. T .

How to obtain this number k?

How do we know that our k-lcs is our lcs, such that we can check whether the lcs
exists or not?
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Deciding the Existence of the Least Common Subsumer

1. Given two concepts C, D and a TBox T as the inputs;
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Description Logic EL and TBox

EL concepts are built by using the following structures:

C,D ::= ⊺ ∣ A ∣ C ⊓ D ∣ ∃r .C

An interpretation I = (∆I , ⋅I) consists of:

– ∆I : a non-empty domain.
– ⋅
I with AI ⊆ ∆I and rI ⊆ ∆I × ∆I

The mapping ⋅I can be extended to EL-concepts

Name Syntax Semantic

Top ⊺ ∆I

Conjunction C ⊓ D CI ∩ DI

Existential Restriction ∃r .C {d ∈ ∆I ∣ ∃e ∈ ∆I : (d,e) ∈
rI and e ∈ CI}

A (general) EL TBox T is a finite set of General Concept Inclusion (GCI) of the
form of C ⊑ D.

An interpretation I satisfies a GCI C ⊑ D iff CI ⊆ DI

I is a model of T iff it satisfies all GCIs in T .

C is subsumed by D w.r.t. T (denoted by C ⊑T D ) iff CI ⊆ DI for all models I
of T . This reasoning task is called subsumption.
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Deciding the Existence of the Least Common Subsumer

1. Given two concepts C, D and a TBox T as the inputs;

2. Compute the canonical models Id
C,T and Ie

D,T of C and D w.r.t. T ;
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Canonical Model

Canonical Model of Concept w.r.t. TBox
It is denoted by IC,T . Recall this example:

T family2
:

Wife ⊑ Female ⊓ Person ⊓ ∃likes.Husband;
Husband ⊑ Male ⊓ Person ⊓ ∃likes.Wife

dHusband dWife
{Male, Person

Husband}
IHusband,T family2

{Wife,

Person, Female}
likes

likes

Id : an interpretation with d ∈ ∆I
d

as an initial element such that all e ∈ ∆I
d

are
reachable from d.
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Product Interpretation

Product Interpretation is denoted by I1×2

Example:

dA

{A}
I1

dC

{C}

r

r

r

dB

{B}
I2

dC

{C}

r

r

r

dA,dB

{}
I1×2

dC ,dC

{C}

dA,dC

{}

dB ,dC

{}

r

r

r r

r r

r

How to get the product of canonical models in the smaller size?
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2. Compute the canonical models Id
C,T and Ie

D,T of C and D w.r.t. T ;

3. Compute the product If
C,T ×D,T of IdC,T and IeD,T ;

4. Compute the maximal simulation Smax1 from IfC,T ×D,T to IfC,T ×D,T and
generate the set V of ≃-classes w.r.t. Smax1 ;
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Simulation Relation

Subsumption can be characterized by a simulation relation.

Let I1 and I2 be interpretations
S ⊆ ∆I1 × ∆I2 is defined as a simulation from I1 to I2.

A simulation Smax from I1 to I2 is said to be maximal if for all S from I1 to I2,
then it holds that S ⊆ Smax.

Example:

d1 d2

d3

r

{A} {A}I1 I2 ((I1, d1) is simulated (≲) by (I2, d2))

{B}
d4

{A,B}

r

((I1, d3) is simulated (≲) by (I2, d4))

(I1,d) is equisimilar to (I2,e) (denoted by (I1,d) ≃ (I2,e)) if (I1,d) ≲ (I2,e) and
(I2,e) ≲ (I1,d).

Let [d ]≃ := {e ∈ ∆I ∣ (I, d) ≃ (I, e)}.

V as the set of ≃-classes w.r.t. a simulation S
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Deciding the Existence of the Least Common Subsumer

1. Given two concepts C, D and a TBox T as the inputs;

2. Compute the canonical models Id
C,T and Ie

D,T of C and D w.r.t. T ;

3. Compute the product If
C,T ×D,T of IdC,T and IeD,T ;

4. Compute the maximal simulation Smax1 from IfC,T ×D,T to IfC,T ×D,T and
generate the set V of ≃-classes w.r.t. Smax1 ;

5. Compute the equisimulation quotient I[f](C,T ×D,T )/≃ of IfC,T ×D,T with

∆
I[f]
(C,T ×D,T )/≃ := V;
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Equisimulation Quotient

I/≃ is an equisimulation quotient of I.

It is computed to:

– Reduce the number of redundant role-successor nodes
– Get the smaller number of roles to be traversed during computing the

k-characteristic concept.

1

dCarol

IdCarol
Kfamily

{Female,

Person, Wife}

dHusband
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Deciding the Existence of the Least Common Subsumer

1. Given two concepts C, D and a TBox T as the inputs;

2. Compute the canonical models Id
C,T and Ie

D,T of C and D w.r.t. T ;

3. Compute the product If
C,T ×D,T of IdC,T and IeD,T ;

4. Compute the maximal simulation Smax1 from IfC,T ×D,T to IfC,T ×D,T and
generate the set V of ≃-classes w.r.t. Smax1 ;

5. Compute the equisimulation quotient I[f](C,T ×D,T )/≃ of IfC,T ×D,T with

∆
I[f]
(C,T ×D,T )/≃ := V;

6. Obtain the number k as a role-depth for our lcs candidate by computing
k = n2 + m + 1, where:

– n = ∆
I[f]
C,T ×D,T /≃ ;

– m = max({rd(F ) ∣ F ∈ sub(T ) ∪ {C,D}})

7. Compute the k-characteristic concept K by traversing I[f](C,T ×D,T )/≃;
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k-Characteristic Concept

Role-Depth bounded concept K with the depth k can be obtained by traversing a
canonical model I.

It is computed recursively by means of k-characteristic concept X k(I,d) with d ∈
∆I .

Example:

de f{A}I1

{A,B}

{B}
sr

r

k = 0; X 0(I,e) := A
k = 1; X 1(I,e) := A ⊓ ∃r .(A ⊓ B)
k = 2; X 2(I,e) := A ⊓ ∃r .(A ⊓ B ⊓ ∃s.B )
k = 3; X 3(I,e) := A ⊓ ∃r .(A ⊓ B ⊓ ∃s.(B ⊓ ∃r .A))

Adrian Nuradiansyah EMCL Workshop 2016 February 12, 2016 18 / 27



k-Characteristic Concept

Role-Depth bounded concept K with the depth k can be obtained by traversing a
canonical model I.

It is computed recursively by means of k-characteristic concept X k(I,d) with d ∈
∆I .

Example:

de f{A}I1

{A,B}

{B}
sr

r

k = 0; X 0(I,e) := A
k = 1; X 1(I,e) := A ⊓ ∃r .(A ⊓ B)
k = 2; X 2(I,e) := A ⊓ ∃r .(A ⊓ B ⊓ ∃s.B )
k = 3; X 3(I,e) := A ⊓ ∃r .(A ⊓ B ⊓ ∃s.(B ⊓ ∃r .A))

Adrian Nuradiansyah EMCL Workshop 2016 February 12, 2016 18 / 27



k-Characteristic Concept

Role-Depth bounded concept K with the depth k can be obtained by traversing a
canonical model I.

It is computed recursively by means of k-characteristic concept X k(I,d) with d ∈
∆I .

Example:

de f{A}I1

{A,B}

{B}
sr

r

k = 0; X 0(I,e) := A
k = 1; X 1(I,e) := A ⊓ ∃r .(A ⊓ B)

k = 2; X 2(I,e) := A ⊓ ∃r .(A ⊓ B ⊓ ∃s.B )
k = 3; X 3(I,e) := A ⊓ ∃r .(A ⊓ B ⊓ ∃s.(B ⊓ ∃r .A))

Adrian Nuradiansyah EMCL Workshop 2016 February 12, 2016 18 / 27



k-Characteristic Concept

Role-Depth bounded concept K with the depth k can be obtained by traversing a
canonical model I.

It is computed recursively by means of k-characteristic concept X k(I,d) with d ∈
∆I .

Example:

de f{A}I1

{A,B}

{B}
sr

r

k = 0; X 0(I,e) := A
k = 1; X 1(I,e) := A ⊓ ∃r .(A ⊓ B)
k = 2; X 2(I,e) := A ⊓ ∃r .(A ⊓ B ⊓ ∃s.B )
k = 3; X 3(I,e) := A ⊓ ∃r .(A ⊓ B ⊓ ∃s.(B ⊓ ∃r .A))

Adrian Nuradiansyah EMCL Workshop 2016 February 12, 2016 18 / 27



Deciding the Existence of the Least Common Subsumer

1. Given two concepts C, D and a TBox T as the inputs;

2. Compute the canonical models Id
C,T and Ie

D,T of C and D w.r.t. T ;

3. Compute the product If
C,T ×D,T of IdC,T and IeD,T ;

4. Compute the maximal simulation Smax1 from IfC,T ×D,T to IfC,T ×D,T and
generate the set V of ≃-classes w.r.t. Smax1 ;

5. Compute the equisimulation quotient I[f](C,T ×D,T )/≃ of IfC,T ×D,T with

∆
I[f]
(C,T ×D,T )/≃ := V;

6. Obtain the number k as a role-depth for our lcs candidate by computing
k = n2 + m + 1, where:

– n = ∆
I[f]
C,T ×D,T /≃ ;

– m = max({rd(F ) ∣ F ∈ sub(T ) ∪ {C,D}})

7. Compute the k-characteristic concept K by traversing I[f](C,T ×D,T )/≃;

8. Compute the canonical model IK of K ;

9. Check whether (I[f](C,T ×D,T )/≃, [f]≃) is simulated by (IdK
K,T ,dK). If it is simulated,

then K is the lcsT (C, D). Otherwise, C and D do not have lcs w.r.t. T .
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Implementation of the Algorithm

Desktop-based application

Executed in console command-line.

It is implemented in Java programming language.

input:

ontology file,
two EL concepts or
single individual
in OWL format

Process:

OWL API (OWL 2.0)
+

ELASTIQ library
(computing

canonical model)

output:

If the lcs/the msc exists,
the returned concept
is represented
of the form of
Manchester OWL syntax

Notes:

The bigger the number of role depth k needed, the bigger the size of computed
concepts.

The presentation of the output of the form of complex concept is quite redundant
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Evaluation: Purposes and Test Ontologies

Purposes:

– To decide the existence of the most specific generalization in cyclic
ontologies.

– To measure the time of computation and analyze the size of computed lcs
and msc concepts.

Test Ontologies

– Cyclic EL ontologies that are applied in the real and practical area of
knowledge base.

– Using 10 versions of GeneOntology.
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Evaluation: in Cyclic Ontologies

1. Least Common Subsumer

Test the cyclicity in all test ontologies

– nnotations1, nnotations2, and nnotations8 have cyclic concepts.
– There are 5 cyclic concepts from nnotations1 and nnotations2, respectively.
– For nnotations8, there are only 2 cyclic concepts.

Compute the existence of the LCS of each pair of cyclic concepts w.r.t. their
ontologies.

– 2 out of 10 pairs of cyclic concepts in both of nnotations1 nnotations2 do
not have the lcs.

– One pair of cyclic concepts in nnotations8 does not have lcs.

Concept Name 1 Concept Name 2 Ontology k (role depth) Result

PomBase SPBC1685.15c PomBase SPCC18B5.03 nnotations1 148 Yes, the lcs exists
PomBase SPCC4B3.15 PomBase SPBC2F12.13 nnotations1 260 Yes, the lcs exists
PomBase SPBC1685.15c PomBase SPBC2F12.13 nnotations1 2708 No, the lcs does not exist
PomBase SPCC18B5.03 PomBase SPCC4B3.15 nnotations2 12548 No, the lcs does not exist
PomBase SPBC1685.15c PomBase SPCC4B3.15 nnotations2 293 Yes, the lcs exists
UniProtKB D9PTP5 UniProtKB Q9GYJ9 nnotations8 260 No, the lcs does not exist

Table: Evaluation for the Existence of the LCS (1)
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Evaluation: in Cyclic Ontologies

Concept Name 1 Concept Name 2 Ontology
Size of

the LCS
Time of

Computation

PomBase SPBC1685.15c PomBase SPCC18B5.03 nnotations1 48 19,882 s
PomBase SPCC4B3.15 PomBase SPBC2F12.13 nnotations1 75 24,525 s
PomBase SPBC1685.15c PomBase SPBC2F12.13 nnotations1 52,963 s
PomBase SPCC18B5.03 PomBase SPCC4B3.15 nnotations2 686,037 s
PomBase SPBC1685.15c PomBase SPCC4B3.15 nnotations2 78 14,936 s
UniProtKB D9PTP5 UniProtKB Q9GYJ9 nnotations8 27,18 s

Table: Evaluation for the Existence of the LCS (2)

2. Most Specific Concept

There is no cyclic individual in all test ontologies.

MSC always exist in this evaluation.

Adrian Nuradiansyah EMCL Workshop 2016 February 12, 2016 23 / 27



Evaluation: in Cyclic Ontologies

Concept Name 1 Concept Name 2 Ontology
Size of

the LCS
Time of

Computation

PomBase SPBC1685.15c PomBase SPCC18B5.03 nnotations1 48 19,882 s
PomBase SPCC4B3.15 PomBase SPBC2F12.13 nnotations1 75 24,525 s
PomBase SPBC1685.15c PomBase SPBC2F12.13 nnotations1 52,963 s
PomBase SPCC18B5.03 PomBase SPCC4B3.15 nnotations2 686,037 s
PomBase SPBC1685.15c PomBase SPCC4B3.15 nnotations2 78 14,936 s
UniProtKB D9PTP5 UniProtKB Q9GYJ9 nnotations8 27,18 s

Table: Evaluation for the Existence of the LCS (2)

2. Most Specific Concept

There is no cyclic individual in all test ontologies.

MSC always exist in this evaluation.

Adrian Nuradiansyah EMCL Workshop 2016 February 12, 2016 23 / 27



Conclusion and Future Work

Conclusions

Implementing the algorithm to decide the existence of the lcs and the msc
by means of canonical model and simulation relation.
Involving the computation of building the product of canonical model in
the smaller size.

▸ Canonical model with an initial element.
▸ Equisimulation quotient of product of canonical model.

Deciding the existence of the lcs and the msc w.r.t. some samples of
GeneOntology version (Cyclic ontology).

▸ 3 out of 10 samples of GeneOntology version are cyclic ontologies;
▸ Some pairs of cyclic concepts w.r.t. those cyclic ontologies do not have lcs.

Future Works

Optimizing the simulation algorithm.
Simplifying the size of returned concept.

Extended to the other small DL language: FL0
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The LCS of FL0 Input Concepts w.r.t. General TBox

Ideas:

Using a decision procedure similar to EL’s case.

Not using canonical model anymore. Instead, least functional model JC ,T of
FL0 concept C w.r.t. General FL0 TBox.

Both of them have similar structure in terms of to label the domain elements and
the role-edges.

But, for the case of least functional model, each role name only connects one
element to its single successor element. Due to different types of ∃ and ∀
semantics.

C ⊑T D ⇐⇒ JD,T ⊆ JC ,T
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The LCS of FL0 Input Concepts w.r.t. General TBox

Research Questions:

How to characterize subsumption w.r.t. General FL0 TBox by means of
simulation relation?

How to prove that the canonical model of k-characteristic concept is also a model
of TBox?

How to prove that there exists a k s.t. the canonical model of k-characteristic
concept w.r.t. T simulates the product of the canonical models of input concepts?

Can we also use the same formula, which is k = n2+m+1?
Most probably, it will be different, but the idea will be quite similar to EL’s case
Ô⇒ using asynchronous and synchronous elements.
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Thank You
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