The Implementation of the Conditions for the Existence of the Most Specific Generalizations w.r.t. General \mathcal{EL} -TBoxes

Adrian Nuradiansyah

Technische Universität Dresden

Supervised by: Anni-Yasmin Turhan

February 12, 2016

EMCL Workshop 2016

- 2 Algorithm to Decide the Existence of the Most Specific Generalization
- Implementation of the Algorithm
- Evaluation of the Implementation in Cyclic Ontology
- 5 Conclusion and Future Work

Most Specific Generalization

- Least common subsumer (lcs) and Most Specific Concept (msc).
- The lcs yields a concept that captures all commonalities of pair of concepts (*subsumption*).
- The msc generalizes an individual into a single concept (instance checking).

Most Specific Generalization

- Least common subsumer (lcs) and Most Specific Concept (msc).
- The lcs yields a concept that captures all commonalities of pair of concepts (*subsumption*).
- The msc generalizes an individual into a single concept (*instance checking*).
- Support building and maintaining the knowledge base (KB) from bottom up approach.
- Processed, investigated, and added into $KB \Rightarrow new knowledge!$
- Neither the lcs nor the msc need to exist in general *EL*-TBox.

Knowledge Base "Family" and its Canonical Model

\$\[\mathcal{T_family_1}:
{Wife \subset Female \pi Person \pi \Bikes.Husband;
HappyPerson \subset Person \pi \Bikes.HappyPerson;
Husband \subset Male \pi Person \pi \Bikes.Wife}
\$\[\mathcal{A_{family_1}}: {likes(bob,carol); likes(bob,bob); Wife(carol); HappyPerson(bob)}\$\]

Knowledge Base "Family" and its Canonical Model

T family1: {Wife ⊆ Female □ Person □ ∃likes.Husband; HappyPerson ⊆ Person □ ∃likes.HappyPerson; Husband ⊆ Male □ Person □ ∃likes.Wife} *A*family1: {*likes(bob,carol); likes(bob,bob)*; Wife(*carol)*; HappyPerson(*bob*)}

Knowledge Base "Family" and its Canonical Model

*T*family1:

 {Wife ⊆ Female □ Person □ ∃likes.Husband;

 HappyPerson ⊆ Person □ ∃likes.HappyPerson;

 Husband ⊆ Male □ Person □ ∃likes.Wife}

 *A*family1:
 {likes(bob,carol); likes(bob,bob); Wife(carol); HappyPerson(bob)}

• Ics(Male, Person)=T, but there is no Ics for Husband and HappyPerson

- Husband and HappyPerson are cyclic concepts.
- msc(carol)=Wife, but there is no msc for bob
 - Wife(carol) and HappyPerson(bob).
 - Wife and HappyPerson are cyclic concepts.
 - Different results for the msc in a cyclic ontology!

Adrian Nuradiansyah

EMCL Workshop 2016

Knowledge Base "Family" and its Canonical Model

*T*family1:

 Wife ⊆ Female □ Person □ ∃likes.Husband;

 Husband ⊆ Male □ Person □ ∃likes.Wife

 HappyPerson ⊆ Person □ ∃likes.HappyPerson;

 *A*family1: likes(Bob,Carol); likes(Bob,Bob); Wife(Carol); HappyPerson(Bob)

- How to compute and decide the existence of the most specific generalization w.r.t. general *EL* TBox?
- For the sake of simplicity, we only consider the notions related to the least common subsumer in further sections.
- Most specific concept can be defined analogously.

Adrian Nuradiansyah

EMCL Workshop 2016

- A concept E is the least common subsumer(lcs) of C and D w.r.t. T (lcs $_T(C, D)$) iff:
 - $C \subseteq_{\mathcal{T}} E \text{ and } D \subseteq_{\mathcal{T}} E$
 - For each concept F such that $C \sqsubseteq_{\mathcal{T}} F$ and $D \sqsubseteq_{\mathcal{T}} F$, then $E \sqsubseteq_{\mathcal{T}} F$.

- A concept *E* is the least common subsumer(lcs) of *C* and *D* w.r.t. \mathcal{T} (lcs $\mathcal{T}(C, D)$) iff:
 - $C \sqsubseteq_{\mathcal{T}} E \text{ and } D \sqsubseteq_{\mathcal{T}} E$
 - For each concept F such that $C \subseteq_{\mathcal{T}} F$ and $D \subseteq_{\mathcal{T}} F$, then $E \subseteq_{\mathcal{T}} F$.
- We deal with a general \mathcal{EL} **TBox**.
- The computed lcs can be captured in an infinite size.

- A concept *E* is the least common subsumer(lcs) of *C* and *D* w.r.t. \mathcal{T} (lcs $\mathcal{T}(C, D)$) iff:
 - $C \sqsubseteq_{\mathcal{T}} E \text{ and } D \sqsubseteq_{\mathcal{T}} E$
 - For each concept F such that $C \subseteq_{\mathcal{T}} F$ and $D \subseteq_{\mathcal{T}} F$, then $E \subseteq_{\mathcal{T}} F$.
- We deal with a general \mathcal{EL} **TBox**.
- The computed lcs can be captured in an infinite size.
- Can we obtain a role-depth bounded lcs with a depth k?

- A concept *E* is the least common subsumer(lcs) of *C* and *D* w.r.t. \mathcal{T} (lcs $\mathcal{T}(C, D)$) iff:
 - $C \sqsubseteq_{\mathcal{T}} E \text{ and } D \sqsubseteq_{\mathcal{T}} E$
 - For each concept F such that $C \subseteq_{\mathcal{T}} F$ and $D \subseteq_{\mathcal{T}} F$, then $E \subseteq_{\mathcal{T}} F$.
- We deal with a general \mathcal{EL} **TBox**.
- The computed lcs can be captured in an infinite size.
- Can we obtain a role-depth bounded lcs with a depth k?
- The role-depth (rd(C)): the maximal nesting of \exists -quantifiers in C.
- Let $k \in \mathbb{N}$ and E, F are the role-depth bounded concepts with the role-depth up to k, then E is the role-depth bounded lcs $(k-lcs_{\mathcal{T}}(C, D))$ of C and D w.r.t. \mathcal{T} .

- A concept *E* is the least common subsumer(lcs) of *C* and *D* w.r.t. \mathcal{T} (lcs $\mathcal{T}(C, D)$) iff:
 - $C \sqsubseteq_{\mathcal{T}} E \text{ and } D \sqsubseteq_{\mathcal{T}} E$
 - For each concept F such that $C \subseteq_{\mathcal{T}} F$ and $D \subseteq_{\mathcal{T}} F$, then $E \subseteq_{\mathcal{T}} F$.
- We deal with a general \mathcal{EL} **TBox**.
- The computed lcs can be captured in an infinite size.
- Can we obtain a role-depth bounded lcs with a depth k?
- The role-depth (rd(C)): the maximal nesting of \exists -quantifiers in C.
- Let $k \in \mathbb{N}$ and E, F are the role-depth bounded concepts with the role-depth up to k, then E is the role-depth bounded lcs $(k-lcs_{\mathcal{T}}(C, D))$ of C and D w.r.t. \mathcal{T} .
- How to obtain this number k?
- How do we know that our *k*-lcs is our lcs, such that we can check whether the lcs exists or not?

Deciding the Existence of the Least Common Subsumer

1. Given two concepts C, D and a TBox \mathcal{T} as the inputs;

Description Logic \mathcal{EL} and TBox

• \mathcal{EL} concepts are built by using the following structures:

 $C,D ::= \top \mid A \mid C \sqcap D \mid \exists r.C$

э

Description Logic \mathcal{EL} and TBox

• *EL* concepts are built by using the following structures:

 $C, D ::= \top | A | C \sqcap D | \exists r.C$ • An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ consists of: - $\Delta^{\mathcal{I}}$: a non-empty domain.

- $\cdot^{\mathcal{I}} \text{ with } A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \text{ and } r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
- The mapping $\cdot^{\mathcal{I}}$ can be extended to \mathcal{EL} -concepts

Name	Syntax	Semantic
Тор	Т	$\Delta^{\mathcal{I}}$
Conjunction	$C \sqcap D$	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
Existential Restriction	∃r.C	$\{d \in \Delta^{\mathcal{I}} \mid \exists e \in \Delta^{\mathcal{I}} : (d, e) \in r^{\mathcal{I}} \text{ and } e \in C^{\mathcal{I}}\}$

Description Logic \mathcal{EL} and TBox

• *EL* concepts are built by using the following structures:

C,D ::= ⊤ | A | C ⊓ D | ∃r.C
An interpretation I = (Δ^I, ·^I) consists of:
- Δ^I: a non-empty domain.

- $\cdot^{\mathcal{I}} \text{ with } A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \text{ and } r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
- The mapping $\cdot^{\mathcal{I}}$ can be extended to \mathcal{EL} -concepts

Name	Syntax	Semantic
Тор	Т	$\Delta^{\mathcal{I}}$
Conjunction	$C \sqcap D$	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
Existential Restriction	∃r.C	$\{d \in \Delta^{\mathcal{I}} \mid \exists e \in \Delta^{\mathcal{I}} : (d, e) \in \\ r^{\mathcal{I}} \text{ and } e \in C^{\mathcal{I}}\}$

- A (general) *EL* TBox *T* is a finite set of General Concept Inclusion (GCI) of the form of C ⊑ D.
- An interpretation \mathcal{I} satisfies a GCI $C \subseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- \mathcal{I} is a model of \mathcal{T} iff it satisfies all GCIs in \mathcal{T} .
- *C* is subsumed by *D* w.r.t. \mathcal{T} (denoted by $C \subseteq_{\mathcal{T}} D$) iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{T} . This reasoning task is called subsumption. Adrian Nuradiansyah EMCL Workshop 2016 February 12, 2016 8/27

Deciding the Existence of the Least Common Subsumer

1. Given two concepts C, D and a TBox \mathcal{T} as the inputs;

- 1. Given two concepts C, D and a TBox ${\mathcal T}$ as the inputs;
- 2. Compute the canonical models $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$ of *C* and *D* w.r.t. \mathcal{T} ;

Canonical Model of Concept w.r.t. TBox

It is denoted by $\mathcal{I}_{C,\mathcal{T}}$. Recall this example:

 \mathcal{T}_{family_2} : Wife \subseteq Female \sqcap Person \sqcap \exists likes.Husband; Husband \subseteq Male \sqcap Person \sqcap \exists likes.Wife

reachable from d.

- 1. Given two concepts C, D and a TBox ${\mathcal T}$ as the inputs;
- 2. Compute the **canonical models** $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$ of *C* and *D* w.r.t. \mathcal{T} ;

- 1. Given two concepts C, D and a TBox ${\mathcal T}$ as the inputs;
- 2. Compute the **canonical models** $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$ of *C* and *D* w.r.t. \mathcal{T} ;
- 3. Compute the product $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^{f}$ of $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$;

 \bullet Product Interpretation is denoted by $\mathcal{I}_{1\times 2}$

- Product Interpretation is denoted by $\mathcal{I}_{1\times 2}$
- Example:

э

- Product Interpretation is denoted by $\mathcal{I}_{1\times 2}$
- Example:

э

- Product Interpretation is denoted by $\mathcal{I}_{1\times 2}$
- Example:

• How to get the product of canonical models in the smaller size?

Adrian Nuradiansyah

< A

- 1. Given two concepts C, D and a TBox ${\mathcal T}$ as the inputs;
- 2. Compute the canonical models $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$ of C and D w.r.t. \mathcal{T} ;
- 3. Compute the **product** $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^{f}$ of $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$;

- 1. Given two concepts C, D and a TBox ${\mathcal T}$ as the inputs;
- 2. Compute the canonical models $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$ of C and D w.r.t. \mathcal{T} ;
- 3. Compute the **product** $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^{f}$ of $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$;
- 4. Compute the maximal simulation S_{\max_1} from $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^f$ to $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^f$ and generate the set \mathcal{V} of \simeq -classes w.r.t. S_{\max_1} ;

- Subsumption can be characterized by a simulation relation.
- Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations $\mathcal{S} \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is defined as a simulation from \mathcal{I}_1 to \mathcal{I}_2 .
- A simulation S_{max} from \mathcal{I}_1 to \mathcal{I}_2 is said to be maximal if for all S from \mathcal{I}_1 to \mathcal{I}_2 , then it holds that $S \subseteq S_{max}$.

- Subsumption can be characterized by a simulation relation.
- Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations $\mathcal{S} \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is defined as a simulation from \mathcal{I}_1 to \mathcal{I}_2 .
- A simulation S_{max} from \mathcal{I}_1 to \mathcal{I}_2 is said to be maximal if for all S from \mathcal{I}_1 to \mathcal{I}_2 , then it holds that $S \subseteq S_{max}$.

- Subsumption can be characterized by a simulation relation.
- Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations $\mathcal{S} \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is defined as a simulation from \mathcal{I}_1 to \mathcal{I}_2 .
- A simulation S_{max} from \mathcal{I}_1 to \mathcal{I}_2 is said to be maximal if for all S from \mathcal{I}_1 to \mathcal{I}_2 , then it holds that $S \subseteq S_{max}$.

- Subsumption can be characterized by a simulation relation.
- Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations $\mathcal{S} \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is defined as a simulation from \mathcal{I}_1 to \mathcal{I}_2 .
- A simulation S_{max} from \mathcal{I}_1 to \mathcal{I}_2 is said to be maximal if for all S from \mathcal{I}_1 to \mathcal{I}_2 , then it holds that $S \subseteq S_{max}$.

- Subsumption can be characterized by a simulation relation.
- Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations $\mathcal{S} \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is defined as a simulation from \mathcal{I}_1 to \mathcal{I}_2 .
- A simulation S_{max} from \mathcal{I}_1 to \mathcal{I}_2 is said to be maximal if for all S from \mathcal{I}_1 to \mathcal{I}_2 , then it holds that $S \subseteq S_{max}$.

- (\mathcal{I}_1,d) is equisimilar to (\mathcal{I}_2,e) (denoted by $(\mathcal{I}_1,d) \simeq (\mathcal{I}_2,e)$) if $(\mathcal{I}_1,d) \lesssim (\mathcal{I}_2,e)$ and $(\mathcal{I}_2,e) \lesssim (\mathcal{I}_1,d)$.
- Let $[d]_{\simeq} := \{ e \in \Delta^{\mathcal{I}} \mid (\mathcal{I}, d) \simeq (\mathcal{I}, e) \}.$
- \mathcal{V} as the set of \simeq -classes w.r.t. a simulation \mathcal{S}

- 1. Given two concepts C, D and a TBox ${\mathcal T}$ as the inputs;
- 2. Compute the canonical models $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$ of C and D w.r.t. \mathcal{T} ;
- 3. Compute the **product** $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^{f}$ of $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$;
- 4. Compute the maximal simulation S_{\max_1} from $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^f$ to $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^f$ and generate the set \mathcal{V} of \simeq -classes w.r.t. S_{\max_1} ;

- 1. Given two concepts C, D and a TBox ${\mathcal T}$ as the inputs;
- 2. Compute the canonical models $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$ of C and D w.r.t. \mathcal{T} ;
- 3. Compute the **product** $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^{f}$ of $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$;
- 4. Compute the maximal simulation S_{\max_1} from $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^f$ to $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^f$ and generate the set \mathcal{V} of \simeq -classes w.r.t. S_{\max_1} ;
- 5. Compute the equisimulation quotient $\mathcal{I}_{(C,\mathcal{T}\times D,\mathcal{T})/\simeq}^{[f]}$ of $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^{f}$ with $\Delta^{\mathcal{I}_{(C,\mathcal{T}\times D,\mathcal{T})/\simeq}^{[f]}} := \mathcal{V};$

- $\mathcal{I}_{/\sim}$ is an equisimulation quotient of \mathcal{I} .
- It is computed to:
 - Reduce the number of redundant role-successor nodes
 - Get the smaller number of roles to be traversed during computing the k-characteristic concept.

- $\mathcal{I}_{/\sim}$ is an equisimulation quotient of \mathcal{I} .
- It is computed to:
 - Reduce the number of redundant role-successor nodes
 - Get the smaller number of roles to be traversed during computing the k-characteristic concept.

- $\mathcal{I}_{/\simeq}$ is an equisimulation quotient of \mathcal{I} .
- It is computed to:
 - Reduce the number of redundant role-successor nodes
 - Get the smaller number of roles to be traversed during computing the k-characteristic concept.

- $\mathcal{I}_{/\sim}$ is an equisimulation quotient of \mathcal{I} .
- It is computed to:
 - Reduce the number of redundant role-successor nodes
 - Get the smaller number of roles to be traversed during computing the k-characteristic concept.

- $\mathcal{I}_{/\sim}$ is an equisimulation quotient of \mathcal{I} .
- It is computed to:
 - Reduce the number of redundant role-successor nodes
 - Get the smaller number of roles to be traversed during computing the k-characteristic concept.

Deciding the Existence of the Least Common Subsumer

- 1. Given two concepts C, D and a TBox ${\mathcal T}$ as the inputs;
- 2. Compute the canonical models $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$ of C and D w.r.t. \mathcal{T} ;
- 3. Compute the **product** $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^{f}$ of $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$;
- 4. Compute the maximal simulation S_{\max_1} from $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^f$ to $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^f$ and generate the set \mathcal{V} of \simeq -classes w.r.t. S_{\max_1} ;
- 5. Compute the equisimulation quotient $\mathcal{I}_{(\mathsf{C},\mathcal{T}\times\mathsf{D},\mathcal{T})/\simeq}^{[\mathsf{f}]}$ of $\mathcal{I}_{\mathsf{C},\mathcal{T}\times\mathsf{D},\mathcal{T}}^{\mathsf{f}}$ with $\Delta^{\mathcal{I}_{(\mathsf{C},\mathcal{T}\times\mathsf{D},\mathcal{T})/\simeq}^{[\mathsf{f}]}} := \mathcal{V};$

Deciding the Existence of the Least Common Subsumer

- 1. Given two concepts C, D and a TBox ${\mathcal T}$ as the inputs;
- 2. Compute the canonical models $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$ of C and D w.r.t. \mathcal{T} ;
- 3. Compute the **product** $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^{f}$ of $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$;
- 4. Compute the maximal simulation S_{\max_1} from $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^f$ to $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^f$ and generate the set \mathcal{V} of \simeq -classes w.r.t. S_{\max_1} ;
- 5. Compute the equisimulation quotient $\mathcal{I}_{(\mathsf{C},\mathcal{T}\times\mathsf{D},\mathcal{T})/\simeq}^{[f]}$ of $\mathcal{I}_{\mathsf{C},\mathcal{T}\times\mathsf{D},\mathcal{T}}^{f}$ with $\Delta^{\mathcal{I}_{(\mathsf{C},\mathcal{T}\times\mathsf{D},\mathcal{T})/\simeq}^{[f]}} := \mathcal{V};$
- 6. Obtain the number k as a role-depth for our lcs candidate by computing $k = n^2 + m + 1$, where:

$$- n = \Delta^{\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}/\simeq}^{[I]}};$$

- m = max({rd(F) | F \in sub(\mathcal{T}) \cup {C,D}})

7. Compute the k-characteristic concept K by traversing $\mathcal{I}_{(C,\mathcal{T}\times D,\mathcal{T})/2}^{[f]}$;

- Role-Depth bounded concept K with the depth k can be obtained by traversing a canonical model \mathcal{I} .
- It is computed recursively by means of k-characteristic concept $X^k(\mathcal{I},d)$ with $d \in \Delta^{\mathcal{I}}$.

- Role-Depth bounded concept K with the depth k can be obtained by traversing a canonical model \mathcal{I} .
- It is computed recursively by means of k-characteristic concept $X^k(\mathcal{I},d)$ with $d \in \Delta^{\mathcal{I}}$.
- Example:

- Role-Depth bounded concept K with the depth k can be obtained by traversing a canonical model \mathcal{I} .
- It is computed recursively by means of k-characteristic concept $X^k(\mathcal{I},d)$ with $d \in \Delta^{\mathcal{I}}$.
- Example:

 $\begin{aligned} \mathbf{k} &= \mathbf{0}; \ X^0(\mathcal{I}, e) := A \\ \mathbf{k} &= \mathbf{1}; \ X^1(\mathcal{I}, e) := A \sqcap \exists r. (A \sqcap B) \end{aligned}$

- Role-Depth bounded concept K with the depth k can be obtained by traversing a canonical model I.
- It is computed recursively by means of k-characteristic concept $X^k(\mathcal{I},d)$ with $d \in \Delta^{\mathcal{I}}$.
- Example:

$$\mathbf{k} = \mathbf{0}; X^{0}(\mathcal{I}, e) := A \mathbf{k} = \mathbf{1}; X^{1}(\mathcal{I}, e) := A \sqcap \exists r. (A \sqcap B) \mathbf{k} = \mathbf{2}; X^{2}(\mathcal{I}, e) := A \sqcap \exists r. (A \sqcap B \sqcap \exists s. B) \mathbf{k} = \mathbf{3}; X^{3}(\mathcal{I}, e) := A \sqcap \exists r. (A \sqcap B \sqcap \exists s. (B \sqcap \exists r. A))$$

Deciding the Existence of the Least Common Subsumer

- 1. Given two concepts C, D and a TBox ${\mathcal T}$ as the inputs;
- 2. Compute the canonical models $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$ of C and D w.r.t. \mathcal{T} ;
- 3. Compute the **product** $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^{f}$ of $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$;
- 4. Compute the maximal simulation S_{\max_1} from $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^f$ to $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^f$ and generate the set \mathcal{V} of \simeq -classes w.r.t. S_{\max_1} ;
- 5. Compute the equisimulation quotient $\mathcal{I}_{(\mathsf{C},\mathcal{T}\times\mathsf{D},\mathcal{T})/\simeq}^{[f]}$ of $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^{f}$ with $\Delta^{\mathcal{I}_{(C,\mathcal{T}\times D,\mathcal{T})/\simeq}^{[f]}} := \mathcal{V};$
- 6. Obtain the number k as a role-depth for our lcs candidate by computing $k = n^2 + m + 1$, where:
 - $\begin{array}{l} \mathbf{n} = \Delta^{\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}/\simeq}^{[f]}}; \\ \mathbf{m} = max(\{rd(F) \mid F \in sub(\mathcal{T}) \cup \{C,D\}\}) \end{array}$
- 7. Compute the k-characteristic concept K by traversing $\mathcal{I}_{(C,\mathcal{T}\times D,\mathcal{T})/2}^{[f]}$;

Deciding the Existence of the Least Common Subsumer

- 1. Given two concepts C, D and a TBox ${\mathcal T}$ as the inputs;
- 2. Compute the canonical models $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$ of C and D w.r.t. \mathcal{T} ;
- 3. Compute the **product** $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^{f}$ of $\mathcal{I}_{C,\mathcal{T}}^{d}$ and $\mathcal{I}_{D,\mathcal{T}}^{e}$;
- 4. Compute the maximal simulation S_{\max_1} from $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^f$ to $\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}}^f$ and generate the set \mathcal{V} of \simeq -classes w.r.t. S_{\max_1} ;
- 5. Compute the equisimulation quotient $\mathcal{I}_{(\mathsf{C},\mathcal{T}\times\mathsf{D},\mathcal{T})/\simeq}^{[f]}$ of $\mathcal{I}_{\mathsf{C},\mathcal{T}\times\mathsf{D},\mathcal{T}}^{f}$ with $\Delta^{\mathcal{I}_{(\mathsf{C},\mathcal{T}\times\mathsf{D},\mathcal{T})/\simeq}^{[f]}} := \mathcal{V};$
- 6. Obtain the **number k** as a role-depth for our lcs candidate by computing $\mathbf{k} = \mathbf{n}^2 + \mathbf{m} + \mathbf{1}$, where:
 - $\begin{array}{l} \mathbf{n} = \Delta^{\mathcal{I}_{C,\mathcal{T}\times D,\mathcal{T}/\simeq}^{[f]}}; \\ \mathbf{m} = max(\{rd(F) \mid F \in sub(\mathcal{T}) \cup \{C,D\}\}) \end{array}$
- 7. Compute the k-characteristic concept K by traversing $\mathcal{I}_{(C,\mathcal{T}\times D,\mathcal{T})/2}^{[f]}$;
- 8. Compute the **canonical model** $\mathcal{I}_{\mathbf{K}}$ of K;
- 9. Check whether $(\mathcal{I}_{(C,\mathcal{T}\times D,\mathcal{T})/\simeq}^{[f]}, [f]_{\simeq})$ is simulated by $(\mathcal{I}_{K,\mathcal{T}}^{d_{K}}, d_{K})$. If it is simulated, then K is the lcs $_{\mathcal{T}}(C, D)$. Otherwise, C and D do not have lcs w.r.t. \mathcal{T} .

- Desktop-based application
- Executed in console command-line.
- It is implemented in Java programming language.

- Desktop-based application
- Executed in console command-line.
- It is implemented in Java programming language.

input:

ontology file, two \mathcal{EL} concepts or single individual in OWL format

- Desktop-based application
- Executed in console command-line.
- It is implemented in Java programming language.

- Desktop-based application
- Executed in console command-line.
- It is implemented in Java programming language.

- Desktop-based application
- Executed in console command-line.
- It is implemented in Java programming language.

Notes:

- The bigger the number of role depth *k* needed, the bigger the size of computed concepts.
- The presentation of the output of the form of complex concept is quite redundant

• Purposes:

- To decide the existence of the most specific generalization in cyclic ontologies.
- To measure the time of computation and analyze the size of computed lcs and msc concepts.

• Purposes:

- To decide the existence of the most specific generalization in cyclic ontologies.
- To measure the time of computation and analyze the size of computed lcs and msc concepts.

• Test Ontologies

- Cyclic \mathcal{EL} ontologies that are applied in the real and practical area of knowledge base.
- Using 10 versions of GeneOntology.

Evaluation: in Cyclic Ontologies

- Test the cyclicity in all test ontologies
 - nnotations1, nnotations2, and nnotations8 have cyclic concepts.
 - There are 5 cyclic concepts from *nnotations1* and *nnotations2*, respectively.
 - For *nnotations8*, there are only 2 cyclic concepts.

Evaluation: in Cyclic Ontologies

- Test the cyclicity in all test ontologies
 - nnotations1, nnotations2, and nnotations8 have cyclic concepts.
 - There are 5 cyclic concepts from *nnotations1* and *nnotations2*, respectively.
 - For *nnotations8*, there are only 2 cyclic concepts.
- Compute the existence of the LCS of each pair of cyclic concepts w.r.t. their ontologies.
 - 2 out of 10 pairs of cyclic concepts in both of *nnotations1 nnotations2* do not have the lcs.
 - One pair of cyclic concepts in *nnotations8* does not have lcs.

Evaluation: in Cyclic Ontologies

1. Least Common Subsumer

- Test the cyclicity in all test ontologies
 - nnotations1, nnotations2, and nnotations8 have cyclic concepts.
 - There are 5 cyclic concepts from *nnotations1* and *nnotations2*, respectively.
 - For *nnotations8*, there are only 2 cyclic concepts.
- Compute the existence of the LCS of each pair of cyclic concepts w.r.t. their ontologies.
 - 2 out of 10 pairs of cyclic concepts in both of *nnotations1 nnotations2* do not have the lcs.
 - One pair of cyclic concepts in *nnotations8* does not have lcs.

Concept Name 1	Concept Name 2	Ontology	k (role depth)	Result
PomBase_SPBC1685.15c	PomBase_SPCC18B5.03	nnotations1	148	Yes, the lcs exists
PomBase_SPCC4B3.15	PomBase_SPBC2F12.13	nnotations1	260	Yes, the lcs exists
PomBase_SPBC1685.15c	PomBase_SPBC2F12.13	nnotations1	2708	No, the lcs does not exist
PomBase_SPCC18B5.03	PomBase_SPCC4B3.15	nnotations2	12548	No, the lcs does not exist
PomBase_SPBC1685.15c	PomBase_SPCC4B3.15	nnotations2	293	Yes, the lcs exists
UniProtKB_D9PTP5	UniProtKB_Q9GYJ9	nnotations8	260	No, the lcs does not exist

Table: Evaluation for the Existence of the LCS (1)

Concept Name 1	Concept Name 2	Ontology	Size of the LCS	Time of Computation
PomBase_SPBC1685.15c	PomBase_SPCC18B5.03	nnotations1	48	19,882 s
PomBase_SPCC4B3.15	PomBase_SPBC2F12.13	nnotations1	75	24,525 s
PomBase_SPBC1685.15c	PomBase_SPBC2F12.13	nnotations1		52,963 s
PomBase_SPCC18B5.03	PomBase_SPCC4B3.15	nnotations2		686,037 s
PomBase_SPBC1685.15c	PomBase_SPCC4B3.15	nnotations2	78	14,936 s
UniProtKB_D9PTP5	UniProtKB_Q9GYJ9	nnotations8		27,18 s

Table: Evaluation for the Existence of the LCS (2)

Concept Name 1	Concept Name 2	Ontology	Size of the LCS	Time of Computation
PomBase_SPBC1685.15c	PomBase_SPCC18B5.03	nnotations1	48	19,882 s
PomBase_SPCC4B3.15	PomBase_SPBC2F12.13	nnotations1	75	24,525 s
PomBase_SPBC1685.15c	PomBase_SPBC2F12.13	nnotations1		52,963 s
PomBase_SPCC18B5.03	PomBase_SPCC4B3.15	nnotations2		686,037 s
PomBase_SPBC1685.15c	PomBase_SPCC4B3.15	nnotations2	78	14,936 s
UniProtKB_D9PTP5	UniProtKB_Q9GYJ9	nnotations8		27,18 s

Table: Evaluation for the Existence of the LCS (2)

2. Most Specific Concept

- There is no cyclic individual in all test ontologies.
- MSC always exist in this evaluation.

Conclusions

- Implementing the algorithm to decide the existence of the lcs and the msc by means of canonical model and simulation relation.
- Involving the computation of **building the product of canonical model** in the **smaller size**.
 - Canonical model with an initial element.
 - Equisimulation quotient of product of canonical model.
- Deciding the existence of the lcs and the msc w.r.t. some samples of GeneOntology version (Cyclic ontology).
 - 3 out of 10 samples of GeneOntology version are cyclic ontologies;
 - Some pairs of cyclic concepts w.r.t. those cyclic ontologies do not have lcs.

Conclusions

- Implementing the algorithm to decide the existence of the lcs and the msc by means of canonical model and simulation relation.
- Involving the computation of **building the product of canonical model** in the **smaller size**.
 - Canonical model with an initial element.
 - Equisimulation quotient of product of canonical model.
- Deciding the existence of the lcs and the msc w.r.t. some samples of GeneOntology version (Cyclic ontology).
 - 3 out of 10 samples of GeneOntology version are cyclic ontologies;
 - Some pairs of cyclic concepts w.r.t. those cyclic ontologies do not have lcs.

Future Works

- Optimizing the simulation algorithm.
- Simplifying the size of returned concept.
- Extended to the other small DL language: \mathcal{FL}_0

Ideas:

- Using a decision procedure similar to EL's case.
- Not using canonical model anymore. Instead, least functional model $\mathcal{J}_{C,\mathcal{T}}$ of \mathcal{FL}_0 concept *C* w.r.t. General \mathcal{FL}_0 TBox.
- Both of them have similar structure in terms of to label the domain elements and the role-edges.
- But, for the case of least functional model, each role name only connects one element to its single successor element. Due to different types of ∃ and ∀ semantics.
- $C \subseteq_{\mathcal{T}} D \iff \mathcal{J}_{D,\mathcal{T}} \subseteq \mathcal{J}_{C,\mathcal{T}}$

Research Questions:

- How to characterize subsumption w.r.t. General \mathcal{FL}_0 TBox by means of simulation relation?
- How to prove that the canonical model of k-characteristic concept is also a model of TBox?
- How to prove that there exists a k s.t. the canonical model of k-characteristic concept w.r.t. T simulates the product of the canonical models of input concepts?
- Can we also use the same formula, which is k = n² + m + 1? Most probably, it will be different, but the idea will be quite similar to EL's case susing asynchronous and synchronous elements.

Thank You

3

æ